SYNTHESIS AND CHARACTERIZATION OF A DIMERIC
 TRIS(ARSINO)GALLANE CONTAINING A NONPLANAR (Ga-As) $\boldsymbol{2}_{\mathbf{2}}$ RING: CRYSTAL STRUCTURE OF $\left\{\left[\left(\mathrm{Me}_{3} \mathbf{S i C H}_{2}\right)_{\mathbf{2}} \mathbf{A s}\right]_{3} \mathbf{G a}\right\}_{2}{ }^{*}$

RICHARD L. WELLS *, ANDREW P. PURDY, KELVIN T. HIGA. ANDREW T. McPHAIL, and COLIN G. PITT *

Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, NC 27706 (U.S.A.)
(Received January 20th, 1987)

Summary

The dimer $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{As}\right]_{3} \mathrm{Ga}\right\}_{2}$, only the second tris(arsino)gallane to be completely characterized, has been prepared by the reaction of $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{AsLi}$ with $\mathrm{GaCl}_{3} ; \mathrm{X}$-ray crystallographic analysis shows it to be the first example of a compound containing a distinctly nonplanar four-membered ring of alternating four-coordinate Ga and As atoms.

Recently, we applied two new synthetic methods to the preparation of compounds containing a gallium-arsenic bond, viz., dehalosilylation between a silylarsine and a halogallane [1], and coupling using a lithium arsenide and a chlorogallane [2]. Among the compounds prepared by both methods is the first example of a tris(arsino)gallane, monomeric $\left(\mathrm{Mes}_{2} \mathrm{As}\right)_{3} \mathrm{Ga}$, which X -ray analysis [2] has shown to contain three-coordinate gallium and arsenic. Subsequently, $\left(\mathrm{Bu}_{2}{ }_{2} \mathrm{As}\right){ }_{3} \mathrm{Ga}$ was reported by others, but data for a crystal structure were not obtainable [3]. We now report the structure of a second tris(arsino)gallane, dimeric $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{As}\right]_{3} \mathrm{Ga}$ (1), prepared by the lithium arsenide method. Interestingly, as noted previously, the reaction of $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{AsSiMe}_{3}$ with GaCl_{3} did not yield $\mathbf{1}$ [1]. Compound $\mathbf{1}$ has a solid state structure containing a distinctly nonplanar four-membered ring of alternating four-coordinate Ga and As atoms. This form contrasts with the planar, centrosymmetric ($\mathrm{Ga}-\mathrm{As})_{2}$ units in $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{AsGaPh}_{2}\right]_{2}$ (2) [4], the first dimeric mono(arsino)gallane for which the structure was reported, and in $\left(\mathrm{Bu}_{2}^{\mathrm{t}} \mathrm{AsGaMe}_{2}\right)_{2}$ (3) [3], and the nearly planar unit in $\left(\mathrm{Bu}_{2}^{\mathrm{t}} \mathrm{AsGaBu}_{2}\right)_{2}$ (4) [3], but is similar to, although less puckered than, the novel nonplanar ($\mathrm{Ga}-\mathrm{S})_{2}$ form found

[^0]in $\left(\operatorname{Pr}^{i} \mathbf{S G a I}_{2}\right)_{2}$ which contains two four-coordinate Ga atoms and two three-coordinate S atoms [5].

$1: R=\mathrm{Me}_{3} \mathrm{SiCH}_{2}$
\[

$$
\begin{aligned}
& 2: R=\mathrm{Me}_{3} \mathrm{SiCH}_{2}, \mathrm{R}^{\prime}=\mathrm{Ph}[4] \\
& 3: R=B u^{t}, \mathrm{R}^{\prime}=\mathrm{Me}[3] \\
& 4: R=B u^{t}, \mathrm{R}^{\prime}=\mathrm{Bu}^{n}[3]
\end{aligned}
$$
\]

A suspension of $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2}$ AsLi [6] $(2.03 \mathrm{~g}, 7.9 \mathrm{mmol})$ in hexane was added [7] to a hexane solution of $\mathrm{GaCl}_{3}(0.46 \mathrm{~g}, 2.6 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 18 h at room

Fig. 1. Molecular structure of $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{As}\right]_{3} \mathrm{Ga}\right\}_{2}(\mathbf{1})$. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ are: $\mathrm{Ga}-\mathrm{As}(1)$ 2.581(1), $\mathrm{Ga}-\mathrm{As}(2)$ 2.478(2), $\mathrm{Ga}-\mathrm{As}(3) 2.476(2), \mathrm{Ga}-\mathrm{As}\left(1^{\prime}\right) 2.540(1), \mathrm{Ga}^{\prime}-\mathrm{As}\left(1^{\prime}\right) 2.540(1)$, $\mathrm{Ga}^{\prime}-\mathrm{As}\left(2^{\prime}\right) \quad 2.470(1), \quad \mathrm{Ga}^{\prime}-\mathrm{As}\left(3^{\prime}\right)$ 2.474(2), $\mathrm{Ga}^{\prime}-\mathrm{As}(1) \quad 2.559(1), \mathrm{As}(1)-\mathrm{Ga}-\mathrm{As}\left(1^{\prime}\right) 83.58(4)$, $\mathrm{As}(1)-\mathrm{Ga}^{\prime}-\mathrm{As}\left(1^{\prime}\right) 84.04, \mathrm{Ga}-\mathrm{As}(1)-\mathrm{Ga}^{\prime} 94.57(4), \mathrm{Ga}-\mathrm{As}\left(1^{\prime}\right)-\mathrm{Ga}^{\prime} 96.02(4), \mathrm{As}(2)-\mathrm{Ga}-\mathrm{As}(3) 122.37(5)$, $\mathrm{As}\left(2^{\prime}\right)-\mathrm{Ga}^{\prime}-\mathrm{As}\left(3^{\prime}\right) \mathbf{1 1 3 . 6 8 (5)}, \mathrm{C}(111)-\mathrm{As}(1)-\mathrm{C}(121) 103.0(4), \mathrm{C}\left(111^{\prime}\right)-\mathrm{As}\left(1^{\prime}\right)-\mathrm{C}\left(121^{\prime}\right) 104.7(4)$.

Fig. 2. The nonplanar ($\mathrm{Ga}-\mathrm{As})_{2}$ ring of compound 1.
temperature, the brown mixture formed was filtered, and the filtrate was evaporated and the residue dissolved in hexane. Crystallization ($-78^{\circ} \mathrm{C}$) and cold filtration, followed by solvent removal, recrystallization, hexane washings, and finally drying in vacuo afforded $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{As}\right]_{3} \mathrm{Ga}\right\}_{2}$ (1) as a pale yellow solid $(0.46 \mathrm{~g}, 22 \%$ yield) m.p. $71-149^{\circ} \mathrm{C}$ (dec.) [8]. Crystals suitable for an X-ray structure determination were grown from a $\mathrm{C}_{6} \mathrm{~F}_{6}$ solution [9].

Crystals of 1 comprise discrete centrosymmetrically-related dimers having the structure illustrated in Fig. 1. Several features of this dimer attest to its highly strained nature. Thus, the $\mathrm{Ga}-\mathrm{As}(1)-\mathrm{Ga}^{\prime}-\mathrm{As}\left(1^{\prime}\right)$ ring, with a dihedral angle of 13.6° (vs. $36.7(2)^{\circ}$ in the ($\left.\mathrm{Ga}-\mathrm{S}\right)_{2}$ ring of $\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{SGaI}_{2}\right)_{2}$) between the $\mathrm{As}(1)-\mathrm{Ga}$ $\mathrm{As}\left(1^{\prime}\right)$ and $\mathrm{As}(1)-\mathrm{Ga}^{\prime}-\mathrm{As}\left(1^{\prime}\right)$ planes (mean endocyclic dihedral angle about the ring bonds 10.2°) is, as shown in Fig. 2, distinctly non-planar. Two of the ring bonds, $\mathrm{Ga}-\mathrm{As}\left(1^{\prime}\right)$ and $\mathrm{Ga}^{\prime}-\mathrm{As}\left(1^{\prime}\right)$ at $2.540(1) \AA$, are equal, and significantly shorter than the other pair, $2.559(1)$ and $2.581(1) \mathrm{A}$, of which the latter is the longest distance yet reported for such a bond and contrasts with the corresponding longest values of 2.530(1), 2.558(1), 2.557(3), and 2.553(1) A, respectively, for four-coordinate Ga in dimers 2, 3, and 4, and the unusual $\left[(\mathrm{PhAsH})\left(\mathrm{R}_{2} \mathrm{Ga}\right)(\mathrm{PhAs})_{6}(\mathrm{RGa})_{4}\right] \quad(\mathrm{R}=$ $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$) cluster [10]. All the ring bonds of 1 are longer than the mean of the essentially equal exocyclic $\mathrm{Ga}-\mathrm{As}$ bonded distances to three-coordinate As atoms. which, at $2.475 \AA$, is slightly shorter than the mean $\mathrm{Ga}-\mathrm{As}$ distance for trigonal planar Ga in monomeric $\left(\mathrm{Mes}_{2} \mathrm{As}\right)_{3} \mathrm{Ga}$. The mean ring bond angles in $1\left(84.81^{\circ}\right.$ at $\mathrm{Ga}, 95.30^{\circ}$ at As) are similar to those in dimers 2, 3, and 4 (range: $84.31-85.08^{\circ}$ at Ga ; $94.92-95.69^{\circ}$ at As), but the exocyclic As-Ga-As angles involving the threecoordinate As atoms (122.37(5), $113.68(5)^{\circ}$) differ significantly in response to the different intramolecular interactions involving substituents at each of the Ga centers. Corresponding exocyclic C-As-C angles show much less variation (103.0(4), $104.7(4)^{\circ}$), indicating the greater resistance of the As centers to bond angle deformation.

Cryoscopic molecular weight determinations indicate that 1 remains intact as a dimer in solution at low temperatures. It appears, however, that the dimer is
fluxional in solution (the fluxional properties of a dimeric bis(arsino)gallane have been reported) [1], as indicated by broadening and eventual coalescence of ${ }^{13} \mathrm{C}$ NMR signals as the temperature is increased. Also, compound 1 is thermally unstable in solution at ambient temperature and above, and slowly decomposes to the diarsine $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{As}\right]_{2}$ [1] and unknown products.

Acknowledgement. We thank the Office of Naval Research and the Duke University Research Council for financial support.

References

1 (a) C.G. Pitt, A.P. Purdy, K.T. Higa, and R.L. Wells, Organometallics, 5 (1986) 1266; (b) C.G. Pitt, A.P. Purdy, K.T. Higa, and R.L. Wells, Abstracts of Papers, XXth Organosilicon Symposium, Tarrytown, NY, U.S.A., April, (1986) P-2.27.
2 C.G. Pitt. K.T. Higa, A.T. McPhail, and R.L. Wells, Inorg. Chem., 25 (1986) 2483.
3 A.M. Arif, B.L. Benac, A.H. Cowley, R. Geerts, R.A. Jones, K.B. Kidd, J.M Power, and S.T. Schwab, J. Chem. Soc., Chem. Commun., (1986) 1543.

4 R.L. Wells, A.P. Purdy, A.T. McPhail, and C.G. Pitt, J. Organomet. Chem., 308 (1986) 281.
5 G.G. Hoffman and C. Burschka, Angew. Chem. Int. Ed. Engl., 24 (1985) 970.
$6\left(\mathrm{Me}_{3} \mathrm{SiCI}_{2}\right)_{2}$ AsLi was produced by the reaction of $\left(\mathrm{Mc}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{AsH}[4]$ and $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ in hexane for 2 days at $60^{\circ} \mathrm{C}$, and isolated as an off-white powder.
7 All manipulations were performed under dry nitrogen.
8 Found: C, $35.34 ; \mathrm{H}, 8.29$; mol. wt., 1582 ± 65 (cryoscopic, 0.268 g in 12.22 g cyclohexane). $\mathrm{C}_{48} \mathrm{H}_{132} \mathrm{As}_{6} \mathrm{Ga}_{2} \mathrm{Si}_{12}$ calcd.: C, 35.25 ; $\mathrm{H}, 8.13 \%$; mol. wt., $1636 .{ }^{1} \mathrm{H}$ NMR (300 MHz) (C6 $\mathrm{C}_{6}, 21^{\circ} \mathrm{C}$): $\delta 0.32$ (s, exo- $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.37$ (s, endo- $\mathrm{Me}_{3} \mathrm{Si}$), 1.32 and $1.79\left(\mathrm{AB}\right.$ Pattern, ${ }^{2} J(\mathrm{HH}) 13.8 \mathrm{~Hz}$, exo- CH_{2}), 1.71 (endo- CH_{2}); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.4 MHz) $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 21^{\circ} \mathrm{C}\right.$): $\delta 0.98$ (s , exo- $\mathrm{Me}_{3} \mathrm{Si}$), 2.02 (s , endo- $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 6.69\left(\mathrm{~s}\right.$, exo $\left.-\mathrm{CH}_{2}\right), 10.59\left(\mathrm{~s}\right.$, endo $\left.-\mathrm{CH}_{2}\right)$.
9 Crystal data: $\mathrm{C}_{48} \mathrm{H}_{132} \mathrm{As}_{6} \mathrm{Ga}_{2} \mathrm{Si}_{12}$ (1), $M=1635.59$, triclinic, space group $P \overline{1}, a 15.050(3), b$ $25.417(8), c 12.621(4) \AA, \alpha 93.73(3), \beta 110.68(2), \gamma 77.00(2)^{\circ}, U 4400.5 \AA^{3}, Z=2, D_{\mathrm{c}} 1.234 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu\left(\mathrm{Cu}-K_{\alpha}\right.$ radiation) $50.7 \mathrm{~cm}^{-1}$. The crystal structure was solved by direct methods. Full-matrix least-squares refinement of atomic positional and thermal parameters (anisotropic $\mathrm{As}, \mathrm{C}, \mathrm{Ga}, \mathrm{Si}$; fixed methylene H contributions) converged to $R=0.064$ ($R_{w}=0.097 ; w=1 / \sigma^{2}\left(\left|F_{0}\right|\right)$) over 8504 absorp-tion-corrected reflections ($I>3.0 \sigma(I)$) recorded on an Enraf-Nonius CAD-4 diffractometer ($\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda 1.5418 \AA$; incident-beam graphite monochromator; $\omega-2 \theta$ scans, $\theta_{\text {max }} 57^{\circ}$). A table of atomic coordinates and a full list of bond lengths and angles has been deposited with the Cambridge Crystallographic Data Centre.
10 R.L. Wells, A.P. Purdy, A.T. McPhail, and C.G. Pitt, J. Chem. Soc., Chem. Commun., (1986) 487.

[^0]: * Dedicated to Professor G.E. Coates on the occasion of his 70th birthday.

